

PAPEL DE OPÇÕES:

Melhores Opções da Agricultura Climaticamente Inteligente para a Produção Pecuária na SADC

AGRICULTURA CLIMATICAMENTE INTELIGENTE FERRAMENTAS DE CONHECIMENTO PARA EXTENSIONISTAS

Ferramentas de Informação Personalizadas para Profissionais do Sector Agrícola

Público: Extensionistas Locais

Papel Gênero Juventude Climaticame

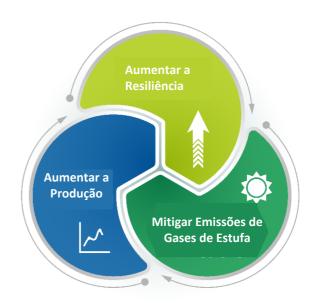
O QUE É A AGRICULTURA CLIMATICAMENTE INTELIGENTE (ACI)?

A ACI é composta por três pilares interdependentes, que devem ser abordados para alcançar os objectivos globais da segurança alimentar e desenvolvimento sustentável:

- Produtividade: Aumentar sustentavelmente produtividade e os rendimentos provenientes da agricultura, sem causar impactos ambientais negativos.
- Adaptação: Reduzir a exposição dos agricultores a riscos a curto prazo, enquanto desenvolver a capacidade para se adaptar e prosperar em face de choques e tensões a mais longo prazo (resiliência). Atenção é dada à protecção dos serviços dos ecossistemas, mantendo a produtividade e a nossa capacidade de adaptar às alterações climáticas.
- Mitigação: Sempre que possível, a ACI deve ajudar a reduzir e / ou eliminar emissões de gases com efeito de estufa (GEE). Isto implica que reduzimos as emissões para cada unidade de produto agrícola (por exemplo, através de reduzir o uso de combustíveis fósseis, melhorar a produtividade agrícola e aumentar a cobertura vegetal).

ACI = Agricultura Sustentável + Resiliência - Emissões

Como é que a ACI é diferente?


- 1. A ACI coloca uma maior ênfase nas avaliações de risco e vulnerabilidade e na previsão meteorológica (curto prazo) e a modelização de cenários climáticos (longo prazo) no processo de tomada de decisões para novas intervenções agrícolas
- 2. A ACI promove a intensificação de abordagens que alcançam ganhos triplos (aumentar a produção, aumentam a resiliência e [se possível] mitigam as emissões de GEE), e ao mesmo tempo reduz a pobreza e melhora os serviços prestados pelos ecossistemas
- 3. A ACI promove uma abordagem sistemática para:
 - a. Identificar as melhores opções para o investimento agrícola
 - b. Contextualizar as melhores opções para assegurar o melhor ajustamento ao seu contexto específico através de ciclos de aprendizagem e feedback
 - c. Garantir um ambiente favorável para que os agricultores (e outros intervenientes) possam investir em práticas e tecnologias para catalisar a adopção da ACI

Mensagens Principais:

- 1. As alterações na distribuição das chuvas e o aumento das temperaturas deverão afectar negativa- e directamente a produção pecuária como resultado do aumento do stress térmico e da redução da disponibilidade de água; e indirectamente desde a qualidade reduzida e disponibilidade de alimentação, e o surgimento de doenças do gado e aumento da concorrência por recursos.
- 2. Este documento descreve algumas das 'melhores' opções climaticamente inteligentes para a produção pecuária na região da SADC
- 3. A ACI é específica ao contexto As Melhores Opções devem ter em conta o próprio contexto e as prioridades dos agricultores, e ser adaptadas para se tornarem as Mais Adequadas soluções de ACI.

Pontos de entrada para a ACI

- Práticas e tecnologias de ACI
- Abordagens a sistemas de ACI
- Ambientes catalizadores para a ACI

CCARDESA

MELHORES OPÇÕES AGRÍCOLAS E CLIMATICAMENTE INTELIGENTES PARA A PRODUÇÃO PECUÁRIA NA SADC

Este Documento de Opções concentra-se em algumas das Melhores Opções de práticas e tecnologia Climaticamente Inteligentes para a Produção Pecuária na região da Comunidade de Desenvolvimento da África Austral (SADC). Estas são apenas algumas das muitas opções disponíveis. Não são listadas em nenhuma ordem específica e foram seleccionados como as melhores opções porque:

- Cada uma delas foi identificado como uma opção prioritária da ACI nos perfis dos países de ACI concluídos até a data para a região da SADC (Moçambique, Zâmbia, Tanzânia e [projecto] Malawi)
- São amplamente aplicáveis em toda a região
- Têm um elevado potencial para abordar os principais restrições à produção pecuária na região (Quadro 1).

Quadro 1: As melhores opções para abordar riscos climáticos para a produção pecuária com os pequenos agricultores

Melhor Opção Climaticamente inteligente para a Produção Pecuária	Riscos climáticos
Maneio alimentar	As alterações climáticas podem tornar a disponibilidade de alimentação e água menos previsível. Quando assegura que os animais têm regimes alimentares adequados ao longo do ano, isso aumenta sua produtividade (ganho de peso /produção de leite//produção de ovos /força de tracção, etc.). Ao aumentar a eficiência com que o gado converte os alimentos em peso /produção, isso reduz as emissões por unidade de produção.
Gestão de pastos / pastagens	O sector de pecuária é vulnerável aos impactos das alterações climáticas por causa do aumento do calor e da redução da produtividade das pastagens, especialmente em áreas secas propensas à secas.
	As perdas globais de nitrogénio provenientes de estrume são de aproximadamente 40% (IPCC, 2006). A maior parte do nitrogénio é perdida na forma de amoníaco (volatilização) e nitrato (lixiviação e escoamento). Isto é equivalente a cerca de 28 milhões de toneladas de nitrogénio, o que representa cerca de um quarto da utilização global total de nitrogénio com fertilizantes sintéticos (FAO, 2016).
Gestão de estrume	O estrume melhora a estrutura física do solo - reduzindo a erosão durante eventos de precipitação extremos. Os biodigestores podem ser utilizados para captar os gases com efeito de estufa (GEEs) liberados pela decomposição de esterco (por exemplo, metano) e utilizá-lo como uma fonte de energia renovável, enquanto ainda produz estrume para ser utilizado como fertilizante orgânico.
Melhoramento genético	O sector da pecuária global, especialmente ruminantes, contribui com aproximadamente 14,5% do total de emissões antrópicas de GEE (Gerber et al. 2013). A criação de animais explora a variação natural entre os animais (tanto dentro como entre raças) para aumentar a produtividade, reduzir as emissões e melhorar a resiliência ao stress ambiental. Esta estratégia é eficaz em termos de custos, permanente e cumulativa.
Gestão de pragas e doenças	As alterações climáticas afectam a distribuição de pragas e doenças transfronteiriças em toda a região da SADC. A compreensão das alterações na gama de várias pragas e doenças através de uma melhor monitorização ajudará a gerir melhor os surtos de doenças. A gestão climaticamente inteligente de pragas e doenças resultará em gado mais produtivo. Isto, por sua vez, reduzirá as emissões de GEE por unidade de produção.

RISCOS CLIMÁTICOS PARA A PRODUÇÃO **PECUÁRIA**

As alterações climáticas representam sérias ameaças à produção pecuária. Prevê-se que o aumento das temperaturas, as alterações na distribuição precipitação e o aumento da frequência de eventos climáticos extremos devem afectar adversamente a produção e a produtividade da pecuária em todo o mundo num futuro próximo. Estes impactos adversos podem ser o resultado directo do aumento do stress térmico e da redução da disponibilidade de água.

Os impactos indirectos podem resultar da redução da qualidade e disponibilidade de rações e forragens, do surgimento de doenças do gado e de uma maior concorrência pelos recursos com outros sectores. O quadro 2 descreve os impactos directos e indirectos das alterações climáticas sobre o pastoreio e os sistemas de produção animal não pastoril.

Os efeitos das alterações climáticas na provavelmente serão generalizados. Os impactos mais graves são antecipados em sistemas de pastoreio, devido a sua dependência das condições climáticas e da base de recursos naturais, e suas oportunidades de adaptação limitadas. É antecipado que os impactos sejam mais severos em sistemas de pastoreio áridos e semi-áridos em latitudes baixas, onde se prevê que temperaturas mais altas e chuvas mais baixas reduzam os rendimentos nas pastagens e aumentem a degradação da terra.

Quadro 2: Impactos directos e indirectos das alterações climáticas nos sistemas de produção pecuária.

Sistema de pastagem

Maior frequência e magnitude de eventos climáticos extremos incluindo secas e inundações

- Perdas de produtividade (stress fisiológico) por causa de temperaturas elevadas
- Perdas de produtividade (stress fisiológico) por causa de temperaturas elevadas
- Mudança na disponibilidade de água (pode aumentar ou diminuir, de acordo com a região)

Sistema sem pastagem

- Mudança na disponibilidade de água (pode aumentar ou diminuir, de acordo com a região)
- Maior frequência de eventos climáticos extremos (impacto menos agudo do que para sistemas extensos)

Impactos indirectos

Impactos

directos

Alterações agroecológicas e no ecossistema que resultam na:

- Alteração na qualidade e quantidade da forragem
- Alteração na interacção de agentes patogénicoshospedeiros, resultando num aumento da incidência de doenças emergentes
- Epidemias de doenças

- Aumento dos preços dos recursos (por exemplo, ração, água e energia)
- Epidemias de doenças
- Aumento do custo de alojamento de animais (por exemplo, sistemas de arrefecimento)

MELHORES OPÇÕES PARA ABORDAR OS RISCOS EM RELAÇÃO À PRODUÇÃO PECUÁRIA

Antes de seleccionar qualquer opção climaticamente inteligente para melhorar a gestão pecuária a nível da exploração agrícola, é essencial entender o contexto agrícola:

- O sistema agrícola
- Como a pecuária é actualmente gerida dentro do sistema?
 - · Quem a gere?
 - · Quais são os efeitos das condições climáticas na gestão pecuária?
 - » O desenvolvimento de um calendário agrícola detalhado é altamente recomendado
 - Como cada tipo de pecuária é priorizado dentro do sistema de cultivo?

- As percepções dos agricultores sobre os problemas e oportunidades
 - · Como os agricultores gerem actualmente os problemas?
 - Estão conscientes das oportunidades que existem para se adaptarem ou mitigarem os riscos?
 - As percepções dos problemas e oportunidades são as mesmas para homens e mulheres?

Uma compreensão profunda do contexto o ajudará a desenvolver as opções Mais Adequadas, em vez de simplesmente as Melhores Opções para o melhoramento genético.

A seguir estão cinco das melhores opções climaticamente inteligentes para a produção pecuária. Estas são abordadas com mais detalhes numa série de Ferramentas de Decisão desenvolvidas pela CCARDESA para a equipa de extensão a nível de campo.

Maneio alimentar

A eficiência melhorada da conversão ração-para-alimentação para animais em sistemas de produção animal é fundamental para melhorar a sustentabilidade ambiental do sector. As práticas e tecnologias climaticamente inteligentes que visam melhorar os recursos alimentares podem resultar em taxas de crescimento animal mais rápidas, uma produção elevada de leite/ovos, a idade mais precoce na primeira reprodução, aumentos de rendas, aumento das taxas de fertilidade, e a redução das taxas de mortalidade.

As opções climaticamente inteligentes para melhorar o maneio alimentar do gado incluem o seguinte:

- Uso de rações não convencionais
- Subproductos de processos agroindustriais
- Arbustos / árvores multifuncionais (por exemplo, Moringa, árvore Neem)
- Digestibilidade melhorada
- A pastagem na estação seca pode ser particularmente baixa em nutrientes e ter uma má digestibilidade
- As opções incluem fazer silagem (adição de melaço ou ureia), milho chocolate, colheitas de dupla finalidade (forragem e grãos), diversificação da composição do pasto

- Conteúdo proteico melhorado:
 - As leguminosas são ricas em proteínas e talvez podem ser uma fonte viável de ração suplementar ou forragem para a pecuária
 - Podem ser incluídas em sistemas de rotação, sistemas de plantação entre faixas de árvores ou sistemas de cultivo intercalar
- Uso de suplementos
 - Providenciado quando a pastagem e/ou a navegação não é suficiente para satisfazer os requisitos de produção
 - Os suplementos vêm em muitas formas, algumas das quais também são classificadas como rações não convencionais
 - Concentrados e blocos de minerais para lamber estão entre os suplementos mais comuns que são fornecidos.

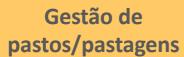
O instituto International Livestock Research Institute (ILRI) desenvolveu a ferramenta de avaliação de ração Feed Assessment Tool (FEAST) para ajudar o pessoal de extensão a seleccionar as opções mais adequadas para o maneio alimentar do gado.

Ver a ferramenta de CCARDESA KP14 para mais detalhes sobre a tomada de decisões climaticamente inteligentes sobre as opções de maneio alimentar para o gado. O quadro 3 ilustra as opções climaticamente inteligentes para o maneio alimentar -- identificadas durante a perfilagem de ACI em países que foi realizada no Malawi, onde os arbustos forrageiros foram priorizados como a melhor opção de ACI a ser promovida.

Quadro 3: Arbustos forrageiros para caprinos foram identificados como uma intervenção prioritária para a ACI a ser apoiada/ promovida no Malawi.

D (1)		Escala predominante de exploração agrícola	Impacto nos Pilares da ACI		
Prática de ACI	Taxa de adopção pela região		Produtividade	Resiliência	Mitigação
Arbustos	Dedza, Mulanje, Blantyre, Mzimba 30%–40%	Pequena e média	Melhorar os	Controla a erosão e perda do solo, reduz a incidência	Aumenta a biomassa e consequentemente
Forrageiros	Chikwawa e Nsanje <30%	Pequena, média e grande	rendimentos e a renda	de vectores e doenças, e aumenta a biodiversidade	aumenta sumidouros de carbono

Fonte: CCAFSCSACountryProfileTanzania



É provável que as pastagens e campos naturais sejam afectadas pelas alterações climáticas, especialmente em áreas áridas. Os períodos de seca mais prolongados e temperaturas mais quentes reduzirão a produtividade das pastagens com efeitos indirectos e adversos na produção pecuária. Esses efeitos são ainda agravados pela expansão das populações e uma maior procura de recursos "comuns", como pastagens.

Ao tomar decisões climaticamente inteligentes sobre pastagens e campos naturais, é importante entender o sistema de cultivo, como a pecuária é actualmente gerida dentro deste sistema e como os diferentes tipos da pecuária são priorizados dentro do sistema.

O primeiro passo é entender a capacidade de carga de pastagens/campos naturais. Quando se sabe quantos animais podem ser mantidos numa determinada área de terra, estará numa melhor posição para fazer uma avaliação do que pode ser feito para aumentar a capacidade de carga; ou, caso já tenha sido ultrapassado, reduzir a densidade pecuária.

Existem muitas actividades climaticamente inteligentes que podem ser realizadas para aumentar a capacidade de carga:

- Aumentar o número de árvores de forragem / arbustos.
- Introduzir espécies não nativas
- Aumentar a palatabilidade / aceitabilidade da pastagem, através de entender quais tipos / partes de plantas cada tipo da pecuária prefere, e devidamente gerir isto
- Semeadura em excesso com espécies específicas (trevo ou ervas)
- Pastoreio rotativo e opções de corte e transporte também estão disponíveis.

Ao tomar decisões com os seus agricultores, é essencial compreender o contexto individual de cada agricultor bem como o contexto mais amplo da comunidade/bacia hidrográfica. Pastagens e campos naturais geralmente considerados a ser um recurso comunitário, e exigirá decisões a nível comunitário. A ferramenta de avaliação da ração Feed Assessment Tool do instituto ILRI é um recurso excelente para ajudar os extensionistas a trabalhar com os seus agricultores no desenvolvimento das opções Mais Adequadas para melhorar os campos naturais e pastagens.

Ver a ferramenta KP15 para mais detalhes sobre a tomada de decisões climaticamente inteligentes sobre as opções de gestão de pastagens/campos naturais para a pecuária. O Quadro 4 ilustra as opções climaticamente inteligentes da substituição de gado bovino por caprino como uma opção de gestão de pastagens/terras de pastagem. Isto foi identificado durante o estudo de práticas de ACI em Moçambique.

Quadro 4: A substituição de caprinos por bovinos foi identificada como uma intervenção prioritária da ACI a ser apoiada/promovida para reduzir a pressão sobre os recursos naturais disponíveis em Moçambique.

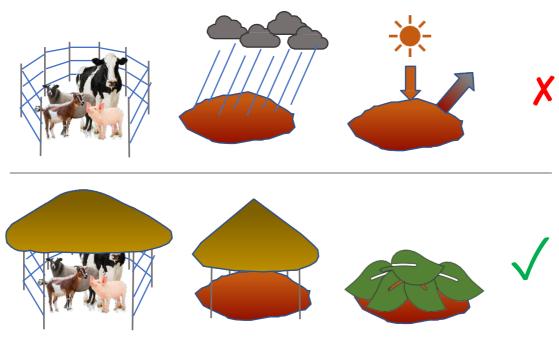
Prática de ACI	Taxa de adopção pela região	Escala predominante de exploração agrícola	Produtividade	Impacto nos Pilares da Resiliência	ACI Mitigação
Diversificação dos meios de subsistência	Maputo, Inhambane <30 %	Grande	Aumenta a produção total. A criação de diferentes espécies	Reduz a exposição a condições climáticas adversas que afectam as	Proporciona uma moderada redução
(manter animais mais pequenos, como cabras)	Gaza <30 %	Grande	de pecuária expande as fontes de renda e segurança alimentar	naturais por uni	das emissões de GEE por unidade de produção

Gestão de estrume

A gestão integrada de estrume (IMM - Integrated Manure Management) é o tratamento óptimo, específico ao local, para o estrume de gado, desde a recolha, passando pelo tratamento e armazenagem, até à aplicação nas culturas (e aquacultura). Factos fundamentais a ter em conta:

- O sistema de habitação determina as principais características do estrume
- Imediatamente após a excreção, os nutrientes podem começar a se dissipar

O desafio é evitar perdas de nutrientes na cadeia de estrume na medida do que é praticamente possível. Inicialmente, o estrume e a urina são as substâncias excretadas pelos animais. Assim que o estrume é misturado com outras substâncias como urina, água, ou material de cama, chama-se estrume.


O estrume é um recurso valioso que pode ser utilizado para a produção de biogás. Pode ser utilizado para a produção de energia ou para cozinhar alimentos. Os restos de estrume (digestores) da produção de biogás ainda podem ser utilizados como corretivos do solo. O estrume é geralmente tratado para uma de três razões:

- Reduzir seu volume
- Aumentar sua aplicabilidade (por ex., compostagem)
- Aumentar seu valor.

O estrume é aplicado como um corretivo do solo para melhorar a fertilidade do solo e aumentar a retenção de humidade. Também pode ajudar a estabilizar o pH e melhorar as propriedades físicas do solo. Para tomar decisões climaticamente inteligentes na gestão de estrume e ter a melhor qualidade possível de estrume a aplicar, é necessário compreender o tipo de solo (textura, inclinação, teor de matéria orgânica, etc.) e factores relacionados com as condições climáticas, tal como o período de sincronização de chuvas, sua duração e intensidade, bem como temperaturas/luz solar.

Ver a ferramenta CCARDESA KP16 para mais detalhes sobre a tomada de decisões climaticamente inteligentes sobre a gestão de estrume. O Quadro 5 ilustra as opções climaticamente inteligentes de melhor alojamento para ovinos/caprinos como opção de gestão de estrume (com outros benefícios suplementares). Isto foi identificado durante o estudo de práticas de ACI na Zâmbia.

Figura 1: O estrume de cobertura evita a perda de nitrogénio por lixiviação, escoamento e volatilização.

Fonte: FAO, Manuremanagement in (sub) Tropics

Quadro 5: Alojamento melhorado para ovelhas / cabras foi identificado como uma intervenção de ACI prioritária a ser apoiada / promovida a fim de melhorar a gestão de estrume na Zâmbia

	* 1		-		
Prática CSA	Taxa de adopção pela região	Escala predominante de exploração agrícola	Produtividade	Impacto nos Pilar Resiliência	es da ACI Mitigação
Diversificação dos meios de subsistência (manter os animais mais pequenos, como cabras)	Região Natural / AEZ1; Província Sul e Leste; e Região Natural 2b <30%	Pequeno, médio e grande	Crescimento mais rápido e uma maior taxa de conversão alimentar devido o alojamento adequado	Reduz a exposição a condições climáticas adversas, por meio de reduzir o stress dos animais (por ex. Períodos de frio extremo)	Permite uma melhor gestão de estrume, reduzindo assim as emissões de GEE relacionadas

Melhoramento genético

A genética faz uso da variação natural entre os animais. A selecção dos animais preferidos pode produzir melhoramentos permanentes e cumulativos na população. Animais mais eficientes podem reduzir em grande parte os custos com a alimentação, ao mesmo tempo que diminuem as emissões de gases com efeito de estufa. A reprodução, incluindo a reprodução cruzada entre espécies indígenas e importadas, pode também melhorar a resiliência a doenças e ao stress térmico, e aumentar o desempenho reprodutivo. Algumas opções de melhoramento genético climaticamente inteligente para a produção pecuária são:

- Hibridação Cruzamento de raças locais com raças introduzidas com o objectivo de aumentar a produção de leite / carne / ovos, etc.
- Raças tradicionais Selecção de raças tradicionais devido à sua adaptação às condições climáticas locais (tolerância ao calor, resistência a pragas / doenças)
- Reprodução assistida inseminação artificial, transferência de embriões / gestação por substituição, avaliação da qualidade de sémen, reprodução assistida por marcador genético
- Geralmente não é uma opção viável para pequenos produtores na região da SADC

Quadro 6: O uso de raças melhoradas de suínos foi identificado como uma intervenção de ACI prioritária a ser apoiada / promovida de modo a melhorar a produtividade do gado em Moçambique.

- Raças alternativas Apresentar novas raças com características desejadas para substituir as raças existentes
 - Diversificação de espécies Selecção de diferentes espécies de gado para minimizar ou diversificar o risco (por ex. mudar de gado para camelos).

Leva tempo melhorar a composição genética do gado, especialmente para animais maiores - uma vez que os ciclos de reprodução sejam mais longos. É essencial que o agricultor estabeleça objectivos claros para o melhoramento genético dos seus animais, e compreenda que pequenos melhoramentos genéticos incrementais em cada geração levarão muitos anos para produzir resultados positivos.

Cada agricultor pode ter objectivos de reprodução diferentes para a mesma espécie. É importante que se evite uma abordagem única para todos. Por exemplo, vários agricultores podem possuir cabras; alguns podem colocar mais ênfase na produção de leite, porque consideram isso como uma fonte de renda chave. Outros podem concentrar-se na velocidade com que podem atingir a maturidade e nos pesos-alvo para a venda/abate. A compreensão do contexto agrícola e do sistema de produção permitir-lhe-á tomar decisões climaticamente inteligentes sobre a melhor forma de o agricultor puder abordar as suas prioridades de criação.

Ver a ferramenta CCARDESA KP17 para mais detalhes sobre a tomada de decisões climaticamente inteligentes sobre o melhoramento genético do gado. O Quadro 4 ilustra as melhores opções climaticamente inteligentes do cruzamento de raças locais e exóticas de frango como uma opção de gestão de gado. Isto foi identificado durante o estudo de práticas de ACI em Moçambique.

Prática de ACI	Taxa de adopção	Escala predominante	Imp Produtividade	pacto nos Pilares da ACI Adaptação	Mitigação
	pela região	de exploração agrícola			. 0. 1.
Cruzamento (usando variedades locais e exóticas de frango)	Natural Região / AEZ 1; Região Natural 2a <30%	Pequena	Aumenta a qualidade e estabilidade da produção alimentar. Reduz os custos de produção.	Raças locais podem apresentar uma maior resistência a doenças e stress térmico.	Insumos reduzidos podem reduzir as emissões de GEE por unidade de produto.

CCARDESA

Opções de gestão do controlo de pragas e doencas

Pragas e doenças causam perdas massivas na produção de gado em toda a África Austral. As práticas climaticamente inteligentes que podem melhorar o controlo de pragas e doenças podem:

- Reduzir as taxas de mortalidade
- Taxas reduzidas de morbidade (doença)
- Aumentar as taxas de crescimento animal
- Aumentar a produção de leite / ovo / carne
- Reduzir a idade no primiero parição de gado/ parto de cordeiro/ parto de potros / parição, etc.
- Aumentar as taxas de fertilidade
- Aumentar a renda.

A capacidade de identificar qual praga/doença está a afectar o gado é o primeiro passo para ser capaz de a controlar. Cada praga/doença tem o seu próprio ciclo de vida. Para seleccionar a opção de gestão mais climaticamente inteligente, é necessário compreender o ciclo de vida das pragas. Algumas pragas/doenças ocorrem regularmente em determinados períodos do ano e/ou são desencadeadas pelas temperaturas/condições pluviométricas.

A incidência da febre de Vale do Rift aumenta geralmente após a estação das chuvas. A pecuária pode não ser bem nutrida durante a estação seca, e por isso pode ser mais susceptível a infecções - especialmente se muitos rebanhos estiverem a utilizar os mesmos pontos para abeberamento e alimentação. Procure saber dos seus agricultores quando as doenças são mais prevalecentes, as condições meteorológicas nesse momento e quais as práticas de gestão que estão ser utilizadas, pois isso ajudará na qual(is) tomada de decisões sobre opção(ões) climaticamente inteligente(s) de gestão pragas/doenças climáticas que melhor se adaptará(ão) aos seus agricultores.

Algumas opções incluem:

- Controlo biológico dos vectores Usar meios não químicos para controlar os vectores
- Algumas doenças passam de um hospedeiro para outro através de vectores. Os vectores mais comuns pequenos insectos que (mosquitos/pulgas) e carraças.
- Patos, animais selvagens e até pessoas também podem ser vectores de doenças

Raças resistentes

- As raças locais são normalmente mais resistentes / tolerantes a pragas / doenças endémicas do que as raças exóticas
- Raças exóticas podem ser mais produtivas, mas geralmente requerem um maneio mais intensivo
- O cruzamento de raças locais com raças exóticas pode aumentar a produção, bem como a tolerância a pragas / doenças

Campanhas de vacinação

Estas podem ser um meio rentável de prevenção de infecções. Requerem um planeamento detalhado e uma comunicação clara com os agricultores para serem bem sucedidos.

Algumas pragas/doenças causam enormes perdas em toda a região, e/ou podem ser transmitidas aos seres humanos. Estas devem ser comunicadas sempre que um surto é observado. Os surtos ou a propagação podem ser directa ou indirectamente devidos a alterações climáticas. A notificação exacta ajuda a acompanhar a propagação de doenças/pragas. Isto permite uma melhor tomada de decisões sobre os métodos de prevenção, tais como campanhas de vacinação.

Consulte a ferramenta CCARDESA KP18 para obter mais detalhes sobre como tomar decisões climaticamente inteligentes sobre as opções de controlo de pragas e doenças para o gado. O Quadro 7 ilustra as melhores opções climaticamente inteligentes para o controlo integrado de pragas e doenças como uma opção na produção da pecuária. Isso foi identificado durante o estudo de práticas de ACI na Zâmbia.

Quadro 7: O controlo integrado de pragas e doenças foi identificado como uma intervenção ACI prioritária a ser apoiada/promovida a fim de melhorar a produtividade pecuária na Zâmbia.

Prática de ACI	Taxa de adopção pela região	Escala predominante de exploração	Produtividade	Impacto nos Pilares da ACI Resiliência	Mitigação
Controlo integrado de pragas e	Região Natural 2b 30% –60%	agrícola Pequena, Média	Garante a qualidade da colheita, portanto	Reduz as perdas de colheitas devido a pragas e doenças, mesmo	Reduz as emissões de GEE ao
doenças (pecuária)	Região Natural 1 <30%		aumenta o potencial de renda	quando as colheitas estão sob condições de stress de humidade	reduzir o uso de pesticidas sintéticos

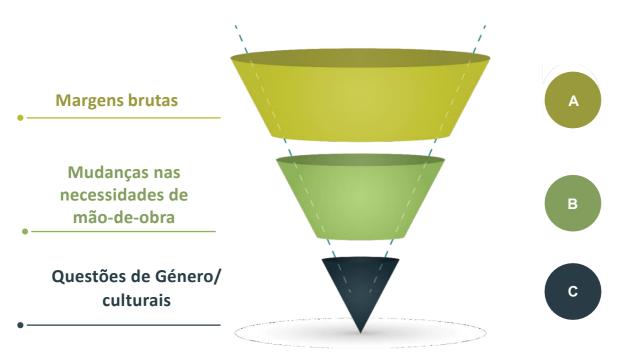
Fonte: CCAFSCSACountry ProfileZambia

COMO ESCOLHER AS MELHORES OPÇÕES CLIMATICAMENTE **INTELIGENTES PARA O(S) SEU(S) AGRICULTOR(ES)**

Uma vez que tenha trabalhado com o(s) seu(s) agricultor(es) para determinar se as soluções climaticamente inteligentes propostas são viáveis, terá uma lista de opções viáveis. O passo seguinte é escolher a opção mais adequada para satisfazer as exigências do(s) agricultor(es).

Devem ser estabelecidos ensaios com os agricultores para ensaiar as soluções viáveis e identificar quais são as mais eficazes. Estes podem ser feitos com agricultores individuais, com agricultores líderes, ou através de escolas de campos agrícolas [farmer field schools (FFS)].

Sempre que possível, as margens brutas devem ser sempre calculadas para avaliar o retorno do investimento. Isto resultará na identificação da opção mais rentável. O custo da própria mão-de-obra deve ser incluído em qualquer análise da margem bruta, juntamente com todos os outros factores de produção. Uma decisão sobre uma prática/tecnologia pode ter efeitos positivos ou negativos sobre os requisitos de mão-de-obra/insumos, mais tarde no ciclo de vida do animal.


É importante compreender quem faz o quê e quando dentro de todo o ciclo de vida e avaliar os custos com insumos ao longo de todo um ciclo de produção. Isto pode ser vários anos para a pecuária, como o gado.

Margens brutas, os necessidades de mão-de-obra, questões de género e culturais, bem como múltiplas outras específicas do contexto, devem compreendidas e devem ser feitas compensações ao decidir qual a prática/tecnologia de ACI que é a mais adequada para um determinado agricultor (Figura 2).

Lembre-se, ao estabelecer ensaios com agricultores, deve assegurar que todas as outras variáveis são as mesmas - excepto a que está a ensaiar (raça, habitação, pastagem, tipo e quantidade de ração ou acesso à água, etc.).

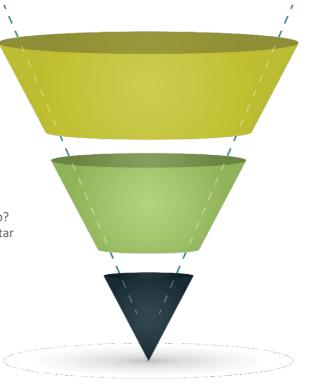
Figura 2: É necessário ter uma compreensão profunda do contexto e da interacção entre os múltiplos assuntos sociais, ambientais e agronómicos para poder tomar decisões climaticamente inteligentes.

Decisão sobre a opção Climaticamente Inteligente para promover uma adopção generalizada

CCARDESA

EM RESUMO

ETAPA 1: Identificar as opções


- Qual é a situação actual?
- O que acontece se nada for feito?
- Qual é o potencial se forem introduzidas as opções climaticamente inteligentes?

ETAPA 2: Analisar a viabilidade

- O que está a ser exigido pelos agricultores? Quais são as suas exigências? Os requisitos para homens e mulheres são os mesmos?
- A tecnologia / prática está disponível / acessível aos agricultores-alvo?
- A prática/tecnologia climaticamente inteligente proposta vai aumentar ou reduzir as necessidades de mão-de-obra?

ETAPA 3: Seleccionar a opção

- Ensaiar diferentes opções com os agricultores
- Avaliar a eficácia de custos ao usar uma análise de margens brutas
- Avaliar possíveis restrições de género / culturais.

Os seguintes recursos, que foram utilizados como referência para o desenvolvimento da presente Ferramenta de Conhecimento, fornecem leituras adicionais valiosas sobre este assunto. Consulte também o site de CCARDESA (www.ccardesa.org), a série completa de Ferramentas de Conhecimento, e os Guias Técnicos associados.

- As Ferramentas de Conhecimento de CCARDESA KPs 14, 15, 16, 17 e 18
- Access Agriculture Vários vídeos sobre a saúde animal, alimentação, reprodução, etc.
 - Um recurso muito útil para mostrar aos agricultores. Disponível em vários idiomas. Se você se inscrever (gratuitamente), poderá obter acesso a guias técnicos para baixar e muito mais. Um bom recurso para referir a qualquer tema. Nem todos são climaticamente inteligentes
- União Africana Inter-African Bureau for Animal Resources (AU-IBAR): http://www.au-ibar.org/
 - The Transboundary Animal Diseases and Zoonoses Compendium for Africa – é bastante científico e não tem ilustrações - mas é um recurso útil
- Australian Centre for International Agricultural Research (ACIAR) - Controlling Newcastle Disease in Village Chickens: A Field Manual
 - Um recurso excelente para quem planea uma campanha de vacinação (não só para frango)
- AU-IBAR Um manual de campo sobre doenças animais síndromes: com ênfase transfronteiricas
 - · Um guia simples e ilustrado para as principais doenças transfronteiriças na região. Altamente recomendado
- CCAFS CSA Country Profiles
- CCAFS The CSA Guide (https://csa.guide/)
- FAO The Climate Smart Agriculture Sourcebook
- FAO Climate Smart Agriculture: Building Resilience to Climate Change - Section IV; A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in **Developing Countries**
 - Boas informações básicas. Não é um guia técnico.

- FAO A Manual for the Primary Animal Health Care http://www.fao.org/docrep/t0690e/ Worker: t0690e00.htm#Contents
- Um recurso detalhado, útil para todos os dirigentes extensionistas
- FAO Manure Management in the (Sub-)Tropics: Training Manual for Extension Workers, Report 919 Wageningen UR Livestock Research Rome/ Wageningen, October 2015
 - Um recurso muito prático para o pessoal de extensão
- GACSA Improved Ruminant Genetics
 - Uma boa descrição geral das opções climaticamente inteligentes para melhoramentos genéticos em pecuária
- GACSA Manure Helps Feed the World
 - boa descrição geral das climaticamente inteligentes e das componentes de gestão de estrume
- ILRI FEAST: https://www.ilri.org/feast
 - Esta é uma ferramenta útil para ajudar a tomar decisões sobre intervenções na pecuária
- ILRI Smallholder dairy farmer training manual. ILRI Manual 24, 2016
 - Este é um recurso útil para avaliar a condição corporal, detecção de calor, indicadores-chave de desempenho (características), etc.
- Small-scale Livestock and Livelihoods Program, Malawi (SSLLP) – Training Notes for Community Animal Health Workers on Dairy Cattle, Pig Production, Village Poultry, Goats and Sheep
 - Estes são recursos excelentes dirigidos a trabalhadores comunitários na saúde animal, mas perfeitamente utilizáveis para todos os extensionistas que trabalham com gado. Incluem descrições de pragas / doenças comuns em cada espécie, bem como medidas de controlo e orientações gerais de produção. Foco no Malawi, mas muito útil noutros contextos
- Shamba Shape Up
 - Vários vídeos e folhetos disponíveis. Pode levar algum tempo para encontrar os que você procura, mas vale a pena.

